Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.11.528155

ABSTRACT

Tiled amplicon sequencing has served as an essential tool for tracking the spread and evolution of SARS-CoV-2 in real-time directly from environmental and clinical samples. Over 14 million SARS-CoV-2 genomes are now available on GISAID, most sequenced and assembled via tiled amplicon sequencing. While computational tools for tiled amplicon design exist, they require downstream manual optimization both computationally and experimentally, which is slow, laborious, and costly. Here, we present Olivar, the first open-source computational tool capable of fully automating the design of tiled amplicons by integrating SNPs, non-specific amplification, etc. into a "risk score" for each single nucleotide of the target genome. Oli- var evaluates thousands sets of possible tiled amplicons and minimizes primer dimer in parallel. In a direct in-silico com- parison with PrimalScheme, we show that Olivar has fewer SNPs overlapping with primers and predicted PCR byproducts. We also compared Olivar head-to-head with ARTIC v4.1, the most widely used tiled amplicons for SARS-CoV-2 sequencing. We next tested Olivar on real wastewater samples and found that our automated approach had up to 3-fold higher map- ping rates compared to ARTIC v4.1 while retaining similar coverage. To the best of our knowledge, Olivar represents the first open-source, fully automated design tool that simultaneously evaluates and optimizes risks of known primer design issues for robust tiled amplicon sequencing. Olivar is available as a web application at https://olivar.rice.edu/. Olivar can also be installed locally as a command line tool with Bioconda. Source code, installation guide and usage are available at https: //gitlab.com/treangenlab/olivar.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.02.184481

ABSTRACT

The COVID-19 pandemic has sparked an urgent need to uncover the underlying biology of this devastating disease. Though RNA viruses mutate more rapidly than DNA viruses, there are a relatively small number of single nucleotide polymorphisms (SNPs) that differentiate the main SARS-CoV-2 clades that have spread throughout the world. In this study, we investigated over 7,000 SARS-CoV-2 datasets to unveil both intrahost and interhost diversity. Our intrahost and interhost diversity analyses yielded three major observations. First, the mutational profile of SARS-CoV-2 highlights iSNV and SNP similarity, albeit with high variability in C>T changes. Second, iSNV and SNP patterns in SARS-CoV-2 are more similar to MERS-CoV than SARS-CoV-1. Third, a significant fraction of small indels fuel the genetic diversity of SARS-CoV-2. Altogether, our findings provide insight into SARS-CoV-2 genomic diversity, inform the design of detection tests, and highlight the potential of iSNVs for tracking the transmission of SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL